INTOXICAÇÃO SUBAGUDA AO MANGANÊS EM RATOS WISTAR ADULTOS: AVALIAÇÃO DE PARÂMETROS OXIDATIVOS NO SNC E DEPOSIÇÃO DO METAL EM DIFERENTES TECIDOS

Autores

  • Maria Victória Branco Flores Graduada em Ciências Biológicas pela Universidade do Oeste de Santa Catarina, UNOESC, Joaçaba, SC
  • Tuany Eichwald Mestre em Biociências e Saúde pela Universidade do Oeste de Santa Catarina, UNOESC, Joaçaba, SC
  • Analú Mantovani Doutora em Ciências do Solo, Professora na Universidade do Oeste de Santa Catarina, UNOESC, Campos Novos, SC
  • Viviane Glaser Doutora em Neurociências, Professora na Universidade Federal de Santa Catarina, UFSC, Curitibanos, SC
  • Carine Raquel Richter Schimitz Mestranda em Biociências e Saúde pela Universidade do Oeste de Santa Catarina, UNOESC, Joaçaba, SC
  • Carina Rossoni Doutora em Medicina e Ciências da Saúde, Professora do Programa de Pós-Graduação em Biociências e Saúde, UNOESC Joaçaba, SC
  • Jovani Antônio Steffani Doutor em Ergonomia, Professor do Programa de Pós-Graduação em Biociências e Saúde, UNOESC Joaçaba, SC
  • Diego Perinetto Mestrando em Biociências e Saúde pela Universidade do Oeste de Santa Catarina, UNOESC, Joaçaba, SC
  • Diego Carvalho Doutor em Fisiologia Geral, Professor do Programa de Pós-Graduação em Biociências e Saúde, UNOESC Joaçaba, SC
  • Aline Pertile Remor Universidade do Oeste de Santa Catarina

DOI:

https://doi.org/10.33362/ries.v7i2.1446

Palavras-chave:

Manganês. Exposição subaguda. Parâmetros oxidativos. Função mitocondrial.

Resumo

O Manganês (Mn) é um metal essencial para o organismo. É distribuído no ambiente e utilizado em processos industriais. Apesar de essencial, é neurotóxico à exposições cumulativas, causando uma desordem neurológica, o Manganismo. O estudo avaliou o efeito da administração subaguda de Mn sob a forma de cloreto e acetato de Mn, sobre a função mitocondrial e parâmetros oxidativos no encéfalo, bem como o acúmulo deste metal no encéfalo e tecidos periféricos de ratos adultos. Os ratos receberam 6 mg/kg de Mn i.p. na forma de cloreto ou acetato de Mn, 5 dias/semana por 4 semanas. O grupo controle recebeu solução salina 0,9% pela mesma via de administração e mesmo período. Foi mensurada a concentração de substâncias reativas ao ácido tiobarbitúrico (TBARS) e grupamentos NPSH, a atividade dos complexos I e II da cadeia respiratória no encéfalo e/ou estruturas cerebrais, bem como o peso corporal e a concentração de Mn e Fe no soro, encéfalo, tecido renal e hepático. Foi observada uma diminuição no ganho de peso corporal dos animais que receberam o Mn, um aumento na concentração/depósito de Mn no soro, encéfalo e tecido renal, tanto na forma de cloreto e acetato de Mn, quando comparados com o grupo controle. Além disso, houve um aumento significativo no conteúdo de NPSH no encéfalo e, embora não significativo, uma tendência de aumento da concentração de TBARS, no grupo que recebeu cloreto de Mn. Ainda, foi verificada uma inibição na atividade do complexo I no estriado dos animais expostos ao cloreto de Mn. Não houve diferença entre os grupos nas atividades do complexo I e II no encéfalo e hipocampo. Em conjunto, os dados indicam que a exposição ao Mn em baixas doses contribui para o desenvolvimento de estresse oxidativo e disfunção mitocondrial no SNC, com aparente predileção de dano ao estriado.

Palavras-chave: Manganês. Exposição subaguda. Parâmetros oxidativos. Função mitocondrial.

 

MANGANESE SUBACUTE INTOXICATION IN ADULT WISTAR RATS: EVALUATION OF OXIDATIVE PARAMETERS IN CNS AND METAL DEPOSITION IN DIFFERENT TISSUES

 

ABSTRACT: Mn is an essential metal to the organism. It is distributed in the environment and used in industrial processes. Although essential, it is neurotoxic to cumulative exposures, and can cause a neurological disorder, called Manganism. This study evaluated the effect of subacute Mn as chloride and acetate of Mn administration on mitochondrial function and oxidative parameters in adult rat brain, as well as the accumulation of this metal in the brain and peripheral tissues. The rats received 6 mg/kg of Mn i.p., as Mn chloride or Mn acetate, 5 days/week for 4 weeks. The control group received 0.9% of saline solution in the same way of administration and in the same period. It was measured the concentration of thiobarbituric acid reactive substances (TBARS) and NPSH groups, the activity of mitochondrial complex I and II in brain and/or in the brain structures, as well as the body weight and the concentration of Mn and Fe accumulation. It was observed a decrease on body weight gain in animals exposed to Mn and an increase of concentration/deposit of Mn in serum, brain and kidney, in the both Mn chloride and acetate form when compared to the control group. In addition, there was a significant increase in brain NPSH content and, although it was not significant, a trend of increasing on TBARS concentration in the group that received Mn. Besides that, a significant inhibition of complex I activity was observed in the striatum of the animals exposed to Mn. There was not difference between groups on complex I and II in the brain and hippocampus. Together, these data indicate that exposure to Mn at low doses contributes to the development of oxidative stress and mitochondrial dysfunction in the CNS, with apparent predilection of striatum damage.

Keywords: Manganese. Subacute exposure. Oxidative parameters. Mitochondrial function.

Referências

ALI, S. F. et al. Manganese-induced reactive oxygen species: Comparison between Mn+2 and Mn+3. Neurodegeneration, v. 4, n. 3, p. 329–334, 1995.

ANDERSON, M. E.; MEISTER, A. Transport and direct utilization of gamma-glutamylcyst(e)ine for glutathione synthesis. Proceedings of the National Academy of Sciences of the United States of America, v. 80, n. 3, p. 707–11, 1983.

AON, M. A. et al. Glutathione/thioredoxin systems modulate mitochondrial H 2 O 2 emission: An experimental-computational study. The Journal of General Physiology, v. 139, n. 6, p. 479–491, 2012.

ASCHNER, J. L.; ASCHNER, M. Nutritional aspects of manganese homeostasis. Molecular Aspects of Medicine, v. 26, n. 4–5 SPEC. ISS., p. 353–362, 2005.

ASCHNER, M. et al. Manganese: Recent advances in understanding its transport and neurotoxicity. Toxicology and Applied Pharmacology, v. 221, n. 2, p. 131–147, 2007.

ASCHNER, M.; GANNON, M. Manganese (Mn) transport across the rat blood-brain barrier: Saturable and transferrin-dependent transport mechanisms. Brain Research Bulletin, v. 33, n. 3, p. 345–349, 1994.

BELL, J. G.; KEEN, C. L.; LÖNNERDAL, B. Higher retention of manganese in suckling than in adult rats is not due to maturational differences in manganese uptake by rat small intestine. Journal of Toxicology and Environmental Health, v. 26, n. 4, p. 387–398, 1989.

BOWMAN, A. B. et al. Role of manganese in neurodegenerative diseases. Journal of Trace Elements in Medicine and Biology, v. 25, n. 4, p. 191–203, 2011.

CANNON, J. R. et al. Expression of human E46K-mutated α-synuclein in BAC-transgenic rats replicates early-stage Parkinson’s disease features and enhances vulnerability to mitochondrial impairment. Experimental Neurology, v. 240, n. 1, p. 44–56, 2013.

CAROCHO, M.; FERREIRA, I. C. F. R. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food and Chemical Toxicology, v. 51, n. 1, p. 15–25, 2013.

CASSINA, A; RADI, R. Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Archives of biochemistry and biophysics, v. 328, n. 2, p. 309–316, 1996.

CHEN, Jing-Yuan et al. Differential cytotoxicity of Mn (II) and Mn (III): special reference to mitochondrial [Fe-S] containing enzymes. Toxicology and applied pharmacology, v. 175, n. 2, p. 160-168, 2001.

CHEN, P. et al. Manganese homeostasis in the nervous system. Journal of Neurochemistry, v. 134, n. 4, p. 601–610, 2015.

CHUN, H. S.; LEE, H.; SON, J. H. Manganese induces endoplasmic reticulum (ER) stress and activates multiple caspases in nigral dopaminergic neuronal cells, SN4741. Neuroscience Letters, v. 316, n. 1, p. 5–8, 2001.

COTZIAS, C. THE HIGH SPECIFICITY OF THE MANGANESE PATHWAY THROUGH THE BODY 1 , 2 The accepted ideas about the physiological role of manganese have been derived predominantly from in vitro experiments . However , these are characterized by lack of specificity : Only a. p. 1298–1305, 1958.

CROSSGROVE, J.; ZHENG, W. Manganese toxicity upon overexposure. NMR in Biomedicine, v. 17, n. 8, p. 544–553, 2004.

DESOLE, M. S. et al. Cellular defense mechanisms in the striatum of young and aged rats subchronically exposed to manganese. Neuropharmacology. v. 34, n. 3, p. 289-295, 1995.

ELLMAN, G. L. Tissue sulfhydryl Groups. p. 70–77, 1959.

ESTERBAUER H. K, Cheeseman H. Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4-hydroxynonenal. Methodsin Enzymology, v. 186, p. 407- 421, 1990.

FARINA, M. et al. Metals, oxidative stress and neurodegeneration: A focus on iron, manganese and mercury. Neurochemistry International, v. 62, n. 5, p. 575–594, 2013.

FISCHER, J. C. et al. Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clinica Chimica Acta, v. 153, n. 1, p. 23–36, 1985.

FITSANAKIS, V. A. et al. Measuring Brain Manganese and Iron Accumulation in Rats following 14 Weeks of Low-Dose Manganese Treatment Using Atomic Absorption Spectroscopy and Magnetic Resonance Imaging. v. 103, n. 1, p. 116–124, 2008.

FITSANAKIS, V. A. et al. Changes in dietary iron exacerbate regional brain manganese accumulation as determined by magnetic resonance imaging. Toxicological Sciences, v. 120, n. 1, p. 146–153, 2011.

FORMAN, H. J. et al. The chemistry of cell signaling by reactive oxygen and nitrogen species and 4-hydroxynonenal. Archives of Biochemistry and Biophysics, v. 477, n. 2, p. 183–195, 2008.

FREELAND-GRAVES, J. H.; LIN, P. H. Plasma uptake of manganese as affected by oral loads of manganese, calcium, milk, phosphorus, copper, and zinc. Journal of the American College of Nutrition, v. 10, n. 1, p. 38–43, 1991.

GARCIA, S. J. et al. Iron deficient and manganese supplemented diets alter metals and transporters in the developing rat brain. Toxicological Sciences, v. 95, n. 1, p. 205–214, 2007.

GARRICK, M. D. et al. DMT1: A mammalian transporter for multiple metals. BioMetals, v. 16, n. 1, p. 41–54, 2003.

GAVIN, C. E.; GUNTER, K. K.; GUNTER, T. E. Mn2+ sequestration by mitochondria and inhibition of oxidative phosphorylation. Toxicology and Applied Pharmacology, v. 115, n. 1, p. 1–5, 1992.

GERBER, G. B.; LÉONARD, A.; HANTSON, P. Carcinogenicity, mutagenicity and teratogenicity of manganese compounds. Critical Reviews in Oncology/Hematology, v. 42, n. 1, p. 25–34, 2002.

GUNSHIN, H. et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature, v. 388, n. July, p. 482–488, 1997.

GUNTER, T. E. et al. Manganese transport via the transferrin mechanism. NeuroToxicology, v. 34, n. 1, p. 118–127, 2013.

HEILIG, E. et al. Pharmacokinetics of pulmonary manganese absorption: evidence for increased susceptibility to manganese loading in iron-deficient rats. American journal of physiology. Lung cellular and molecular physiology, v. 288, n. 5, p. L887–L893, 2005.

HERRERO HERNANDEZ, E. et al. Follow-up of patients affected by manganese-induced Parkinsonism after treatment with CaNa2EDTA. NeuroToxicology, v. 27, n. 3, p. 333–339, 2006.

HORNING, K. J. et al. Manganese Is Essential for Neuronal Health. Annual review of nutrition, v. 35, n. May, p. 71–108, 2015.

HUANG, C. et al. Chronic Manganese Intoxication. Archives Neurology, v. 46, p. 1104–1106, 1989.

HUANG, E.; ONG, W. Y.; CONNOR, J. R. Distribution of divalent metal transporter-1 in the monkey basal ganglia. Neuroscience, v. 128, n. 3, p. 487–496, 2004.

HUANG, P. et al. Manganese effects in the liver following subacute or subchronic manganese chloride exposure in rats. Ecotoxicology and Environmental Safety, v. 74, n. 4, p. 615–622, 2011.

HUSSAIN, S.; ALI, S. F. Manganese scavenges superoxide and hydroxyl radicals: An in vitro study in rats. Neuroscience Letters, v. 261, n. 1–2, p. 21–24, 1999.

JANKOVIC, J. Searching for a relationship between manganese and welding and Parkinson’s disease. Neurology, v. 64, n. 12, p. 2021–2028, 2005.

JIANG, Y.-M. et al. Effective treatment of manganese-induced occupational Parkinsonism with p-aminosalicylic acid: a case of 17-year follow-up study. Journal of occupational and environmental medicine / American College of Occupational and Environmental Medicine, v. 48, n. 6, p. 644–649, 2006.

JIAO, J. et al. Manganese-induced single strand breaks of mitochondrial DNA in vitro and in vivo. Environmental Toxicology and Pharmacology, v. 26, n. 2, p. 123–127, 2008.

KWAKYE, G. F. et al. Manganese-induced parkinsonism and Parkinson’s disease: Shared and distinguishable features. International Journal of Environmental Research and Public Health, v. 12, n. 7, p. 7519–7540, 2015.

LEBLONDEL, G.; ALLAIN, P. Manganese transport by caco-2 cells. Biological Trace Element Research, v. 67, n. 1, p. 13, 1999.

LEONARDUZZI, G.; SOTTERO, B.; POLI, G. Targeting tissue oxidative damage by means of cell signaling modulators: The antioxidant concept revisited. Pharmacology and Therapeutics, v. 128, n. 2, p. 336–374, 2010.

LOWRY, H; J, NIRA;A, ROSEBROUGH; FARR, LEWIS AND RANDALL, J. Protein Measurement With the Folin Phenol Reagent. Analytical Biochemistry, v. 193, n. 1, p. 265–275, 1951.

LÜCKING, C. B. et al. ASSOCIATION BETWEEN EARLY-ONSET PARKINSON’S DISEASE AND MUTATIONS IN THE PARKIN GENE. The New England Journal of Medicine, v. 342, n. 21, p. 1560–1567, 2000.

MAGDER, S. Reactive oxygen species: toxic molecules or spark of life? Critical care (London, England), v. 10, n. 1, p. 208, 2006.

NAVARRO-YEPES, J. et al. Antioxidant gene therapy against neuronal cell death. Pharmacology & Therapeutics, v. 142, n. 2, p. 206–230, 2014.

NISCHWITZ, V.; MICHALKE, B.; KETTRUP, A. Optimisation of extraction procedures for metallothionein-isoforms and superoxide dsmutase from liver samples using spiking experiments. The Royal Society of Chemistry, v. 128, n. 1, p. 109–115, 2003.

O’NEAL, S. L. et al. Subacute manganese exposure in rats is a neurochemical model of early manganese toxicity. NeuroToxicology, v. 44, p. 303–313, 2014.

OLANOW, C. W. Manganese-induced parkinsonism and parkinson’s disease. Annals of the New York Academy of Sciences, v. 1012, p. 209–223, 2004.

OULHOTE, Y. et al. Research | Children ’ s Health Neurobehavioral Function in School-Age Children Exposed to Manganese in Drinking Water. v. 122, n. 12, p. 1343–1350, 2014.

POLI, G. et al. 4-Hydroxynonenal: A Membrane Lipid Oxidation Product of Medicinal Interest. Medicinal Research Reviews, v. 28, n. 4, p. 569–631, 2008.

ROTH, J. A. Homeostatic and toxic mechanisms regulating manganese uptake, retention, and elimination. Biological Research, v. 39, n. 1, p. 45–57, 2006.

SAEIDNIA, S.; ABDOLLAHI, M. Toxicological and pharmacological concerns on oxidative stress and related diseases. Toxicology and Applied Pharmacology, v. 273, n. 3, p. 442–455, 2013.

SCHOLTE, H. R. The biochemical basis of mitochondrial diseases. J Bioenerg Biomembr, v. 20, n. 2, p. 161–191, 1988.

SIDORYK-WEGRZYNOWICZ, M.; ASCHNER, M. Manganese toxicity in the central nervous system: The glutamine/glutamate-??-aminobutyric acid cycle. Journal of Internal Medicine, v. 273, n. 5, p. 466–477, 2013.

SINGH, J. et al. Biochemical and histopathological alterations in early manganese toxicity in rats. Environmental physiology & biochemistry, v. 4, n. 1, p. 16, 1974.

SMITH, E. A. et al. Increased whole blood manganese concentrations observed in children with iron deficiency anaemia. Journal of Trace Elements in Medicine and Biology, v. 27, n. 1, p. 65–69, 2013.

TAKEDA, A.; SAWASHITA, J.; OKADA, S. Biological half-lives of zinc and manganese in rat brain. Brain Research, v. 695, n. 1, p. 53–58, 1995.

THOMPSON, K. et al. Olfactory uptake of manganese requires DMT1 and is enhanced by anemia. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, v. 21, n. 1, p. 223–30, 2007.

UTTARA, B. et al. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Current neuropharmacology, v. 7, n. 1, p. 65–74, 2009.

WILLIAMS, M. et al. Toxicological Profile for Manganese. Agency for Toxic Substances and Disease Registry, n. September, p. 504, 2012.

ZHANG, F. et al. In vitro effect of manganese chloride exposure on energy metabolism and oxidative damage of mitochondria isolated from rat brain. Environmental Toxicology and Pharmacology, v. 26, n. 2, p. 232–236, 2008.

ZHANG, S.; FU, J.; ZHOU, Z. In vitro effect of manganese chloride exposure on reactive oxygen species generation and respiratory chain complexes activities of mitochondria isolated from rat brain. Toxicology in Vitro, v. 18, n. 1, p. 71–77, 2004.

ZHANG, S.; ZHOU, Z.; FU, J. Effect of manganese chloride exposure on liver and brain mitochondria function in rats. Environmental Research, v. 93, n. 2, p. 149–157, 2003.

ZWINGMANN, C.; LEIBFRITZ, D.; HAZELL, A. S. Energy Metabolism in Astrocytes and Neurons Treated with Manganese: Relation among Cell-Specific Energy Failure, Glucose Metabolism, and Intercellular Trafficking Using Multinuclear NMR-Spectroscopic Analysis. Journal of Cerebral Blood Flow & Metabolism, v. 23, n. 6, p. 756–771, 2003.

Downloads

Publicado

2018-12-01

Como Citar

Flores, M. V. B., Eichwald, T., Mantovani, A., Glaser, V., Schimitz, C. R. R., Rossoni, C., Steffani, J. A., Perinetto, D., Carvalho, D., & Remor, A. P. (2018). INTOXICAÇÃO SUBAGUDA AO MANGANÊS EM RATOS WISTAR ADULTOS: AVALIAÇÃO DE PARÂMETROS OXIDATIVOS NO SNC E DEPOSIÇÃO DO METAL EM DIFERENTES TECIDOS. Revista Interdisciplinar De Estudos Em Saúde, 7(2), 193–210. https://doi.org/10.33362/ries.v7i2.1446

Edição

Seção

Estudos Interdisciplinares em Saúde