A AVALIAÇÃO DO DANO AO DNA PELO ENSAIO COMETA ALCALINO NÃO ESTÁ ASSOCIADA A DESFECHOS CLÍNICOS EM MULHERES COM LÚPUS ERITEMATOSO SISTÊMICO

Autores

  • Camila de Melo Carvalho Nascimento Multiuser Laboratory for Research Support in Nephrology and Medical Sciences (LAMAP), Faculty of Medicine, Universidade Federal Fluminense, Rio de Janeiro - Brazi
  • Lilian Alves Multiuser Laboratory for Research Support in Nephrology and Medical Sciences (LAMAP), Faculty of Medicine, Universidade Federal Fluminense, Rio de Janeiro - Brazi
  • Rodrigo Cutrim Gaudio Reumathology Unit, Hospital Universitário Antonio Pedro, Rio de Janeiro – Brazil
  • Alice Ramos Silva Universidade Federal Fluminense
  • Matheus Daudt Lemos Multiuser Laboratory for Research Support in Nephrology and Medical Sciences (LAMAP), Faculty of Medicine, Universidade Federal Fluminense, Rio de Janeiro - Brazi
  • Mauro Jorge Cabral-Castro Multiuser Laboratory for Research Support in Nephrology and Medical Sciences (LAMAP), Faculty of Medicine, Universidade Federal Fluminense, Rio de Janeiro - Brazi
  • Katia Lino Batista Reumathology Unit, Hospital Universitário Antonio Pedro, Rio de Janeiro – Brazil
  • Ana Luísa Figueira Gouvêa Department of Pathology, Faculty of Medicine, Universidade Federal Fluminense, Rio de Janeiro - Brazil.
  • Jorge Reis Almeida
  • Andrea Alice da Silva
  • Thalia Medeiros Multiuser Laboratory for Research Support in Nephrology and Medical Sciences (LAMAP), Faculty of Medicine, Universidade Federal Fluminense, Rio de Janeiro - Brazi
  • Fabiana Rabe Carvalho Multiuser Laboratory for Research Support in Nephrology and Medical Sciences (LAMAP), Faculty of Medicine, Universidade Federal Fluminense, Rio de Janeiro - Brazi

DOI:

https://doi.org/10.33362/ries.v1i1.3337

Palavras-chave:

Lúpus eritematoso sistêmico, dano ao DNA, ensaio cometa alcalino

Resumo

Introdução: No lúpus eritematoso sistêmico (LES), um estado inflamatório leva ao estresse oxidativo e à formação excessiva de espécies reativas de oxigênio, aumentando o dano celular, mutações e comprometimento do reparo do DNA. Portanto, nosso estudo teve como objetivo avaliar o desempenho do ensaio do cometa alcalino para investigar danos ao DNA em mulheres com LES.Métodos: Trata-se de um estudo transversal que incluiu mulheres brasileiras com LES atendidas em um hospital universitário (Rio de Janeiro, Brasil). de 2015 a 2018. A atividade da doença foi avaliada usando o SLE Disease Activity Index 2000 (SLEDAI-2K). O diagnóstico de infecções por CMV e EBV foi realizado por qPCR. O dano ao DNA foi determinado pelo ensaio cometa alcalino, que é uma técnica de eletroforese usada para avaliar a fragmentação do DNA em leucócitos, que é expressa em unidades arbitrárias (UA). Resultados: Estudamos 34 pacientes com LES com idade mediana de 34,5 anos. Pacientes hospitalizados (n=11, 32,3%) apresentaram maior SLEDAI-2K, onde 9 (81,8%) apresentaram SLEDAI-2K ≥ 5 (p=0,038). Não identificamos diferenças significativas entre indivíduos saudáveis e com LES; entretanto, os pacientes hospitalizados apresentaram mediana de UA maior, mas sem significância estatística (p=0,095). Além disso, não houve diferenças nos danos ao DNA de acordo com SLEDAI-2, nefrite lúpica, uso de imunossupressores ou infecções por CMV/EBV. Os danos no DNA não foram associados aos níveis de anti-dsDNA. Por último, as curvas ROC demonstraram um fraco poder preditivo de danos no DNA para diferenciar grupos (AUC < 0,7, p > 0,05). Conclusão: Nossos resultados indicam que o dano ao DNA medido pelo ensaio cometa alcalino não está associado à gravidade do LES e à presença de infecções virais.

 

Referências

Reference

ABENAVOLI, L. et al. Aggressive Large B-Cell Lymphoma in a Systemic Lupus Erythematosus Patient with Chronic Active Epstein-Barr Virus Infection: A Case Report. International Journal of Immunopathology and Pharmacology, v. 24, n. 4, p. 1083–1086, out. 2011.

AKHTER, F. et al. Antigenic role of the adaptive immune response to d -ribose glycated LDL in diabetes, atherosclerosis and diabetes atherosclerotic patients. Life Sciences, v. 151, p. 139–146, abr. 2016.

ARNETH, B. Systemic Lupus Erythematosus and DNA Degradation and Elimination Defects. Frontiers in Immunology, v. 10, p. 1697, 7 ago. 2019.

BAE, S.-C. et al. Reliability and validity of systemic lupus activity measure-revised (SLAM-R) for measuring clinical disease activity in systemic lupus erythematosus. Lupus, v. 10, n. 6, p. 405–409, jun. 2001.

BARBER, M. R. W. et al. Global epidemiology of systemic lupus erythematosus. Nature Reviews Rheumatology, v. 17, n. 9, p. 515–532, set. 2021.

BASTA, F. et al. Systemic Lupus Erythematosus (SLE) Therapy: The Old and the New. Rheumatology and Therapy, v. 7, n. 3, p. 433–446, set. 2020.

BONASSI, S. et al. Effect of smoking habit on the frequency of micronuclei in human lymphocytes: results from the Human MicroNucleus project. Mutation Research/Reviews in Mutation Research, v. 543, n. 2, p. 155–166, mar. 2003.

BRUNEKREEF, T. et al. Microarray testing in patients with systemic lupus erythematosus identifies a high prevalence of CpG DNA-binding antibodies. Lupus Science & Medicine, v. 8, n. 1, p. e000531, out. 2021.

CARVALHO, N. C. et al. Comet assay in neonatal sepsis. The Indian Journal of Pediatrics, v. 77, n. 8, p. 875–877, ago. 2010.

CARVALHO, V. et al. Antinociceptive Activity of Stephanolepis hispidus Skin Aqueous Extract Depends Partly on Opioid System Activation. Marine Drugs, v. 11, n. 12, p. 1221–1234, 10 abr. 2013.

COIMBRA, S. et al. DNA Damage in End-Stage Renal Disease Patients. Assessment by In Vitro Comet Assay and by Cell-Free DNA Quantification. Em: LARRAMENDY, M. L.; SOLONESKI, S. (Eds.). Genotoxicity - A Predictable Risk to Our Actual World. [s.l.] InTech, 2018.

DE AZEVÊDO SILVA, J. et al. LIG4 and RAD52 DNA repair genes polymorphisms and systemic lupus erythematosus. Molecular Biology Reports, v. 41, n. 4, p. 2249–2256, abr. 2014.

DOHERTY, E.; OAKS, Z.; PERL, A. Increased Mitochondrial Electron Transport Chain Activity at Complex I Is Regulated by N -Acetylcysteine in Lymphocytes of Patients with Systemic Lupus Erythematosus. Antioxidants & Redox Signaling, v. 21, n. 1, p. 56–65, jul. 2014.

DOS REIS NETO, E. T. et al. Revisiting hydroxychloroquine and chloroquine for patients with chronic immunity-mediated inflammatory rheumatic diseases. Advances in Rheumatology, v. 60, n. 1, p. 32, dez. 2020.

ERSSON, C. et al. The effects of hemodialysis treatment on the level of DNA strand breaks and oxidative DNA lesions measured by the comet assay. Hemodialysis International, v. 17, n. 3, p. 366–373, jul. 2013.

FANG, L. et al. Comet Assay as an Indirect Measure of Systemic Oxidative Stress. Journal of Visualized Experiments, n. 99, p. 52763, 22 maio 2015.

FASANO, S. et al. Hydroxychloroquine daily dose, hydroxychloroquine blood levels and the risk of flares in patients with systemic lupus erythematosus. Lupus Science & Medicine, v. 10, n. 1, p. e000841, jan. 2023.

FELDMAN, C. H. et al. Serious Infections Among Adult Medicaid Beneficiaries With Systemic Lupus Erythematosus and Lupus Nephritis. Arthritis & Rheumatology, v. 67, n. 6, p. 1577–1585, jun. 2015.

FREIRE, E. A. M.; SOUTO, L. M.; CICONELLI, R. M. Medidas de avaliação em lúpus eritematoso sistêmico. Revista Brasileira de Reumatologia, v. 51, n. 1, p. 75–80, fev. 2011.

FULKERSON, H. L. et al. Overview of Human Cytomegalovirus Pathogenesis. Em: YUROCHKO, A. D. (Ed.). Human Cytomegaloviruses. Methods in Molecular Biology. New York, NY: Springer US, 2021. v. 2244p. 1–18.

GAO, L. et al. Bone Marrow–Derived Mesenchymal Stem Cells From Patients With Systemic Lupus Erythematosus Have a Senescence‐Associated Secretory Phenotype Mediated by a Mitochondrial Antiviral Signaling Protein–Interferon‐β Feedback Loop. Arthritis & Rheumatology, v. 69, n. 8, p. 1623–1635, ago. 2017.

GIOVANNELLI, L. Nutritional and lifestyle determinants of DNA oxidative damage: a study in a Mediterranean population. Carcinogenesis, v. 23, n. 9, p. 1483–1489, 1 set. 2002.

GLADMAN, D. D.; IBAÑEZ, D.; UROWITZ, M. B. Systemic lupus erythematosus disease activity index 2000. The Journal of Rheumatology, v. 29, n. 2, p. 288–291, fev. 2002.

GUTA, S. et al. INFECTIOUSNESS OF SYSTEMIC LUPUS ERYTHEMATOSUS PATIENTS WITH CYTOMEGALOVIRUS AND EPSTEIN-BARR VIRUS. Georgian Medical News, n. 338, p. 121–125, maio 2023.

HOFFMANN, H.; HÖGEL, J.; SPEIT, G. The effect of smoking on DNA effects in the comet assay: a meta-analysis. Mutagenesis, v. 20, n. 6, p. 455–466, 1 nov. 2005.

HOUEN, G.; TRIER, N. H. Epstein-Barr Virus and Systemic Autoimmune Diseases. Frontiers in Immunology, v. 11, p. 587380, 7 jan. 2021.

ILLESCAS‐MONTES, R. et al. Infectious processes and systemic lupus erythematosus. Immunology, v. 158, n. 3, p. 153–160, nov. 2019.

JACKSON, S. P.; BARTEK, J. The DNA-damage response in human biology and disease. Nature, v. 461, n. 7267, p. 1071–1078, 22 out. 2009.

KAMENARSKA, Z. et al. XRCC1 variants do not represent a risk for dermatomyositis and systemic lupus erythematosus in Bulgarian patients. Acta Dermatovenerologica Alpina, Pannonica, Et Adriatica, v. 28, n. 4, p. 149–152, dez. 2019.

KLEINE SCHAARS, K.; VAN WESTRHENEN, R. Pharmacogenomics and the Management of Mood Disorders—A Review. Journal of Personalized Medicine, v. 13, n. 7, p. 1183, 24 jul. 2023.

LAI, Z. et al. N ‐acetylcysteine reduces disease activity by blocking mammalian target of rapamycin in T cells from systemic lupus erythematosus patients: A randomized, double‐blind, placebo‐controlled trial. Arthritis & Rheumatism, v. 64, n. 9, p. 2937–2946, set. 2012.

LEE, Y.-H. et al. The Contribution of DNA Ligase 4 Genetic Variations to Taiwanese Lung Cancer. Anticancer Research, v. 43, n. 8, p. 3447–3453, ago. 2023.

MELO BISNETO, A. V. D. et al. Recombinogenic, genotoxic, and cytotoxic effects of azathioprine using in vivo assays. Journal of Toxicology and Environmental Health, Part A, v. 84, n. 6, p. 261–271, 19 mar. 2021.

MICHELI, C. et al. UCTD and SLE patients show increased levels of oxidative and DNA damage together with an altered kinetics of DSB repair. Mutagenesis, v. 36, n. 6, p. 429–436, 29 nov. 2021.

MIGLANI, K. et al. OGG1 DNA Repair Gene Polymorphism As a Biomarker of Oxidative and Genotoxic DNA Damage. Iranian Biomedical Journal, v. 25, n. 1, p. 47–53, 1 jan. 2021.

MITTAL, M. et al. Reactive Oxygen Species in Inflammation and Tissue Injury. Antioxidants & Redox Signaling, v. 20, n. 7, p. 1126–1167, mar. 2014.

MOLAD, Y. et al. Protective effect of hydroxychloroquine in systemic lupus erythematosus. Prospective long-term study of an Israeli cohort{. Lupus, v. 11, n. 6, p. 356–361, jun. 2002.

MØLLER, P. The comet assay: ready for 30 more years. Mutagenesis, v. 33, n. 1, p. 1–7, 24 fev. 2018.

MONTALVÃO, T. M. et al. DNA damage levels in systemic lupus erythematosus patients with low disease activity: An evaluation by comet assay. Advances in Bioscience and Biotechnology, v. 03, n. 07, p. 983–988, 2012.

NICOPOULLOS, J. et al. Novel use of COMET parameters of sperm DNA damage may increase its utility to diagnose male infertility and predict live births following both IVF and ICSI. Human Reproduction, v. 34, n. 10, p. 1915–1923, 2 out. 2019.

O’DOWD, J. M. et al. HCMV-Infected Cells Maintain Efficient Nucleotide Excision Repair of the Viral Genome while Abrogating Repair of the Host Genome. PLoS Pathogens, v. 8, n. 11, p. e1003038, 29 nov. 2012.

POOL-ZOBEL, B. L. et al. Genetic damage and repair in human rectal cells for biomonitoring: sex differences, effects of alcohol exposure, and susceptibilities in comparison to peripheral blood lymphocytes. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, v. 551, n. 1–2, p. 127–134, jul. 2004.

PU, X.; WANG, Z.; KLAUNIG, J. E. Alkaline Comet Assay for Assessing DNA Damage in Individual Cells. Current Protocols in Toxicology, v. 65, n. 1, ago. 2015.

ROMERO‐DIAZ, J.; ISENBERG, D.; RAMSEY‐GOLDMAN, R. Measures of adult systemic lupus erythematosus: Updated Version of British Isles Lupus Assessment Group (BILAG 2004), European Consensus Lupus Activity Measurements (ECLAM), Systemic Lupus Activity Measure, Revised (SLAM‐R), Systemic Lupus Activity Questionnaire for Population Studies (SLAQ), Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI‐2K), and Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index (SDI). Arthritis Care & Research, v. 63, n. S11, nov. 2011.

SHAO, D. et al. Secondary haemophagocytic lymphohistiocytosis in a patient with new-onset systemic lupus erythematosus: the challenges of timely diagnosis and successful treatment. BMJ Case Reports, v. 16, n. 7, p. e252938, jul. 2023.

SIMONIELLO, M. F. et al. Different end-points to assess effects in systemic lupus erythematosus patients exposed to pesticide mixtures. Toxicology, v. 376, p. 23–29, 1 fev. 2017.

SMOLARZ, B.; WILCZYŃSKI, J.; NOWAKOWSKA, D. DNA repair mechanisms and human cytomegalovirus (HCMV) infection. Folia Microbiologica, v. 60, n. 3, p. 199–209, maio 2015.

SOULIOTIS, V. L. et al. DNA Damage Response and Oxidative Stress in Systemic Autoimmunity. International Journal of Molecular Sciences, v. 21, n. 1, p. 55, 20 dez. 2019.

SOULIOTIS, V. L.; SFIKAKIS, P. P. Increased DNA double-strand breaks and enhanced apoptosis in patients with lupus nephritis. Lupus, v. 24, n. 8, p. 804–815, jul. 2015.

TABOT TABOT, M. K. et al. A Rare Case of Cyclophosphamide-Induced Posterior Reversible Encephalopathy Syndrome in a Patient With Acute Lupus Nephritis Flare. Cureus, 30 jan. 2023.

TRENZ, K. et al. Mutagen sensitivity of peripheral blood from women carrying a BRCA1 or BRCA2 mutation. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, v. 500, n. 1–2, p. 89–96, mar. 2002.

VINUESA, C. G.; SHEN, N.; WARE, T. Genetics of SLE: mechanistic insights from monogenic disease and disease-associated variants. Nature Reviews Nephrology, v. 19, n. 9, p. 558–572, set. 2023.

WANG, P. et al. Roles of DNA damage in renal tubular epithelial cells injury. Frontiers in Physiology, v. 14, p. 1162546, 2023.

WANG, Z. et al. Long-Term Survival and Death Causes of Systemic Lupus Erythematosus in China: A Systemic Review of Observational Studies. Medicine, v. 94, n. 17, p. e794, maio 2015.

WU, C.-C. et al. Epstein–Barr Virus DNase (BGLF5) induces genomic instability in human epithelial cells. Nucleic Acids Research, v. 38, n. 6, p. 1932–1949, abr. 2010.

WU, C.-C. et al. Screening and identification of emodin as an EBV DNase inhibitor to prevent its biological functions. Virology Journal, v. 20, n. 1, p. 148, 13 jul. 2023.

WU, H. et al. Dysregulation of Cell Death and Its Epigenetic Mechanisms in Systemic Lupus Erythematosus. Molecules, v. 22, n. 1, p. 30, 27 dez. 2016.

ZHANG, Q. et al. Deficiency of p53 Causes the Inadequate Expression of miR-1246 in B Cells of Systemic Lupus Erythematosus. The Journal of Immunology, v. 209, n. 8, p. 1492–1498, 15 out. 2022.

ZHU, Q.-Y. Bioinformatics analysis of the pathogenic link between Epstein-Barr virus infection, systemic lupus erythematosus and diffuse large B cell lymphoma. Scientific Reports, v. 13, n. 1, p. 6310, 18 abr. 2023.

ZUCCHI, D. et al. One year in review 2022: systemic lupus erythematosus. Clinical and Experimental Rheumatology, v. 40, n. 1, p. 4–14, 28 jan. 2022.

Downloads

Publicado

2023-12-08

Como Citar

de Melo Carvalho Nascimento, C., Alves, L., Cutrim Gaudio, R., Ramos Silva, A., Daudt Lemos, M., Cabral-Castro, M. J., Lino Batista, K., Figueira Gouvêa, A. L., Reis Almeida, J., da Silva, A. A., Medeiros, T., & Rabe Carvalho, F. (2023). A AVALIAÇÃO DO DANO AO DNA PELO ENSAIO COMETA ALCALINO NÃO ESTÁ ASSOCIADA A DESFECHOS CLÍNICOS EM MULHERES COM LÚPUS ERITEMATOSO SISTÊMICO. Revista Interdisciplinar De Estudos Em Saúde, 1(1), 133–146. https://doi.org/10.33362/ries.v1i1.3337

Edição

Seção

Dossiê: Estudo interdisciplinares em saúde