Laboratory diagnosis of pediatric tuberculosis: a review of routine tests and promising new biomarkers
Diagnóstico laboratorial da tuberculose pediátrica: uma revisão dos testes de rotina e novos biomarcadores promissores
DOI:
https://doi.org/10.33362/ries.v14i2.3590Palavras-chave:
Tuberculosis, Diagnosis, Children, Biomarkers, Laboratorial testsResumo
Despite substantial efforts for the early diagnosis of tuberculosis (TB) in children, the paucibacillary characteristic of the disease and clinical manifestations resembling other pulmonary childhood infections contribute to pediatric TB remaining a significant challenge for global public health. Overall, for children and adolescents, rapid molecular methods, culture and antigen detection in a lateral flow format, constitutes the main technology to help detect active TB and to evaluate drug resistance. In addition, with the rapid technological development, other methodologies are becoming promising for diagnosing pediatric TB. Furthermore, the recent advances in early diagnosis have shown a positive impact on the timing and effectiveness of TB treatment in children. In this way, this review aimed to summarize the laboratory tests available for children while providing insights into new biomarkers (inflammatory mediators, liquid biopsy and extracellular vesicles) in the evolving landscape of pediatric TB diagnosis.
Keywords: Tuberculosis. Diagnosis. Children. Biomarkers. Laboratorial tests.
Resumo: Apesar dos esforços substanciais para o diagnóstico precoce da tuberculose (TB) em crianças, a característica paucibacilar da doença e as manifestações clínicas semelhantes a outras infecções pulmonares da infância contribuem para que a TB pediátrica permaneça um desafio significativo para a saúde pública global. No geral, para crianças e adolescentes, métodos moleculares rápidos, cultura e detecção de antígenos em formato de fluxo lateral constituem as principais tecnologias para ajudar a detectar a TB ativa e avaliar a resistência aos medicamentos. Além disso, com o rápido desenvolvimento tecnológico, outras metodologias estão se tornando promissoras para diagnosticar a TB pediátrica. Ademais, os avanços recentes no diagnóstico precoce demonstraram impacto positivo no tempo e na eficácia do tratamento da TB em crianças. Assim, esta revisão teve como objetivo resumir os testes laboratoriais disponíveis para crianças, fornecendo também perspectivas sobre novos biomarcadores (mediadores inflamatórios, biópsia líquida e vesículas extracelulares) no cenário em evolução do diagnóstico da TB pediátrica.
Palavras-chave: Tuberculose. Diagnóstico. Crianças. Biomarcadores. Exames laboratoriais.
Resumen: A pesar de los esfuerzos sustanciales para el diagnóstico temprano de la tuberculosis (TB) en niños, la característica paucibacilar de la enfermedad y las manifestaciones clínicas que se asemejan a otras infecciones pulmonares infantiles contribuyen a que la TB pediátrica siga siendo un desafío importante para la salud pública mundial. En general, para niños y adolescentes, los métodos moleculares rápidos, el cultivo y la detección de antígenos en formato de flujo lateral constituyen la principal tecnología para ayudar a detectar la TB activa y evaluar la resistencia a los medicamentos. Además, con el rápido desarrollo tecnológico, otras metodologías están mostrando ser prometedoras para el diagnóstico de la TB pediátrica. Asimismo, los avances recientes en el diagnóstico temprano han mostrado un impacto positivo en el tiempo y la efectividad del tratamiento de la TB en niños. Por lo tanto, esta revisión tuvo como objetivo resumir las pruebas de laboratorio disponibles para niños y proporcionar perspectivas sobre nuevos biomarcadores (mediadores inflamatorios, biopsia líquida y vesículas extracelulares) en el panorama evolutivo del diagnóstico de la TB pediátrica.
Palabras clave: Tuberculosis. Diagnóstico. Niños. Biomarcadores. Pruebas de laboratorio.
Referências
ABELS, E. R.; BREAKEFIELD, X. O. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake. Cellular and Molecular Neurobiology, [S. l.], v. 36, n. 3, p. 301–312, abr. 2016.
AHMED, A. et al. Interferon-γ Release Assays in Children <15 Years of Age. Pediatrics, [S. l.], v. 145, n. 1, jan. 2020. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9301964/. Acesso em: 05 fev. 2024.
ALIPOOR, S. D. et al. Serum Exosomal miRNAs Are Associated with Active Pulmonary Tuberculosis. Disease Markers, [S. l.], v. 2019, p. 1907426, 2019.
ALLAN, D. et al. Mesenchymal stromal cell-derived extracellular vesicles for regenerative therapy and immune modulation: Progress and challenges toward clinical application. Stem Cells Translational Medicine, [S. l.], v. 9, n. 1, p. 39-46, jan. 2020.
ÁLVAREZ-JIMÉNEZ, V. D. et al. Extracellular Vesicles Released from Mycobacterium tuberculosis-Infected Neutrophils Promote Macrophage Autophagy and Decrease Intracellular Mycobacterial Survival. Frontiers in Immunology, [S. l.], v. 9, p. 272, 2018.
AMARAL, E. P. et al. The Interplay Between Systemic Inflammation, Oxidative Stress, and Tissue Remodeling in Tuberculosis. Antioxidants & Redox Signaling, [S. l.], v. 34, n. 6, p. 471–485, 20 fev. 2021.
AMERICAN ACADEMY OF PEDIATRICS. Committee on Infectious Diseases. Red Book: 2021–2024 Report of the Committee on Infectious Diseases. Itasca: American Academy of Pediatrics, 2021. Disponível em: https://publications.aap.org/redbook/book/347/Red-Book-2021-2024-Report-of-the-committee-on1. Acesso em: 05 fev. 2024.
AMIN, A. G. et al. Urine lipoarabinomannan in HIV uninfected, smear negative, symptomatic TB patients: effective sample pretreatment for a sensitive immunoassay and mass spectrometry. Scientific Reports, [S. l.], v. 11, n. 1, p. 2922, 03 fev. 2021.
ARAUJO, Z. et al. Study of the antibody response against Mycobacterium tuberculosis antigens in Warao Amerindian children in Venezuela. Memórias do Instituto Oswaldo Cruz, Rio de Janeiro, v. 99, n. 5, p. 517–524, ago. 2004.
ARMAND, M. et al. Cytokine responses to quantiferon peptides in pediatric tuberculosis: a pilot study. Journal of Infection, [S. l.], v. 68, n. 1, p. 62–70, jan. 2014.
ARYA, R. et al. Serum Small Extracellular Vesicles Proteome of Tuberculosis Patients Demonstrated Deregulated Immune Response. Proteomics Clinical Applications, [S. l.], v. 14, n. 1, p. e1900062, jan. 2020.
AUGENSTREICH, J. et al. Phthiocerol Dimycocerosates From Mycobacterium tuberculosis Increase the Membrane Activity of Bacterial Effectors and Host Receptors. Frontiers in Cellular and Infection Microbiology, [S. l.], v. 10, p. 420, 2020.
BRASIL. Ministério da Saúde. Secretaria de Vigilância em Saúde. Boletim Epidemiológico de Tuberculose: número especial. Brasília, DF: Ministério da Saúde, mar. 2023. Disponível em: https://www.gov.br/saude/pt-br/centrais-de-conteudo/publicacoes/boletins/epidemiologicos/especiais/2023/boletim-epidemiologico-de-tuberculose-numero-especial-mar.2023. Acesso em: 05 fev. 2024.
BROWN, L. et al. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nature Reviews Microbiology, [S. l.], v. 13, n. 10, p. 620–630, out. 2015.
BURGER, D.; TOUYZ, R. M. Cellular biomarkers of endothelial health: microparticles, endothelial progenitor cells, and circulating endothelial cells. Journal of the American Society of Hypertension, [S. l.], v. 6, n. 2, p. 85–99, 2012.
CAMPBELL, J. I.; SANDORA, T. J.; HABERER, J. E. A scoping review of paediatric latent tuberculosis infection care cascades: initial steps are lacking. BMJ Global Health, [S. l.], v. 6, n. 5, p. e004836, 20 maio 2021.
CARVALHO, R. F. et al. Diagnosis of pulmonary tuberculosis in children and adolescents: comparison of two versions of the Brazilian Ministry of Health scoring system. Revista do Instituto de Medicina Tropical de São Paulo, São Paulo, v. 62, p. e81, 2020.
CENTERS FOR DISEASE CONTROL AND PREVENTION (CDC). Tuberculosis (TB): TB Guidelines. Atlanta: CDC, 2020. Disponível em: https://www.cdc.gov/tb/publications/guidelines/default.htm. Acesso em: 05 fev. 2024.
CEPHEID. Enabling Access to Molecular Diagnostic Testing Everywhere. [S. l.: s. n.], [20--?]. Disponível em: https://www.cepheid.com/en-US.html. Acesso em: 05 fev. 2024.
CHENG, Y.; SCHOREY, J. S. Extracellular vesicles deliver Mycobacterium RNA to promote host immunity and bacterial killing. EMBO Reports, [S. l.], v. 20, n. 3, p. e46613, mar. 2019.
CHIANG, S. S. et al. Clinical standards for drug-susceptible TB in children and adolescents. The International Journal of Tuberculosis and Lung Disease, [S. l.], v. 27, n. 8, p. 584-598, 01 ago. 2023.
CICCHESE, J. M. et al. Dynamic balance of pro- and anti-inflammatory signals controls disease and limits pathology. Immunological Reviews, [S. l.], v. 285, n. 1, p. 147–167, set. 2018.
CLICK, E. S. et al. Performance of Xpert MTB/RIF and Mycobacterial Culture on Multiple Specimen Types for Diagnosis of Tuberculosis Disease in Young Children and Clinical Characterization According to Standardized Research Case Definitions. The Pediatric Infectious Disease Journal, [S. l.], v. 41, n. 8, p. 671–677, 01 ago. 2022.
COMELLA-DEL-BARRIO, P. et al. A Model Based on the Combination of IFN-γ, IP-10, Ferritin and 25-Hydroxyvitamin D for Discriminating Latent From Active Tuberculosis in Children. Frontiers in Microbiology, [S. l.], v. 10, p. 1855, 2019.
CORREIA-NEVES, M. et al. Lipoarabinomannan in Active and Passive Protection Against Tuberculosis. Frontiers in Immunology, [S. l.], v. 10, p. 1968, 2019.
COSTANTINI, L.; MARANDO, M.; GIANELLA, P. Long-Term GeneXpert Positivity after Treatment for Pulmonary Tuberculosis. European Journal of Case Reports in Internal Medicine, [S. l.], v. 7, n. 10, p. 001737, 2020.
COX, H. et al. Oral Swab Specimens Tested With Xpert MTB/RIF Ultra Assay for Diagnosis of Pulmonary Tuberculosis in Children: A Diagnostic Accuracy Study. Clinical Infectious Diseases, [S. l.], v. 75, n. 12, p. 2145–2152, 19 dez. 2022.
CRUZ-KNIGHT, W.; BLAKE-GUMBS, L. Tuberculosis: an overview. Primary Care, [S. l.], v. 40, n. 3, p. 743–756, set. 2013.
DAHIYA, B. et al. Detection of Mycobacterium tuberculosis lipoarabinomannan and CFP-10 (Rv3874) from urinary extracellular vesicles of tuberculosis patients by immuno-PCR. Pathogens and Disease, [S. l.], v. 77, n. 5, p. ftz049, 01 jul. 2019.
DELACOUR, H. et al. Analytical performances of the Diazyme ADA assay on the Cobas® 6000 system. Clinical Biochemistry, [S. l.], v. 43, n. 18, p. 1468–1471, dez. 2010.
DETJEN, A. K. et al. Xpert MTB/RIF assay for the diagnosis of pulmonary tuberculosis in children: a systematic review and meta-analysis. The Lancet Respiratory Medicine, [S. l.], v. 3, n. 6, p. 451–461, jun. 2015.
DINARDO, A. R. et al. Culture is an imperfect and heterogeneous reference standard in pediatric tuberculosis. Tuberculosis, Edinburgh, v. 101S, p. S105–8, dez. 2016.
DODD, P. J. et al. The global burden of tuberculosis mortality in children: a mathematical modelling study. The Lancet Global Health, [S. l.], v. 5, n. 9, p. e898–906, set. 2017.
DORNELAS MOREIRA, J. et al. Circulating microparticles from subjects with active pulmonary tuberculosis infection modulate immune response. European Journal of Immunology, [S. l.], v. 51, n. 5, p. 1282–1284, maio 2021.
DOS SANTOS, D. C. M. et al. Serological biomarkers for monitoring response to treatment of pulmonary and extrapulmonary tuberculosis in children and adolescents. Tuberculosis, Edinburgh, v. 123, p. 101960, jul. 2020.
DUBALE, M. et al. Stool-based Xpert MTB/RIF assay for the diagnosis of pulmonary tuberculosis in children at a teaching and referral hospital in Southwest Ethiopia. PLoS One, [S. l.], v. 17, n. 5, p. e0267661, 2022.
DUTTA, N. K. et al. Integration of metabolomics and transcriptomics reveals novel biomarkers in the blood for tuberculosis diagnosis in children. Scientific Reports, [S. l.], v. 10, n. 1, p. 19527, 11 nov. 2020.
ERNST, J. D. et al. Meeting report: The International Conference on Human Immunity to Tuberculosis. Tuberculosis, Edinburgh, v. 92, n. 5, p. 440–444, set. 2012.
ESTÉVEZ, O. et al. Identification of candidate host serum and saliva biomarkers for a better diagnosis of active and latent tuberculosis infection. PLoS One, [S. l.], v. 15, n. 7, p. e0235859, 2020.
GALAGAN, J. E. Genomic insights into tuberculosis. Nature Reviews Genetics, [S. l.], v. 15, n. 5, p. 307–320, maio 2014.
GARCÍA-MARTÍNEZ, M. et al. Extracellular vesicles released by J774A.1 macrophages reduce the bacterial load in macrophages and in an experimental mouse model of tuberculosis. International Journal of Nanomedicine, [S. l.], v. 14, p. 6707–6719, 2019.
GHANAIE, R. M. et al. Diagnosis of latent tuberculosis infection among pediatric household contacts of Iranian tuberculosis cases using tuberculin skin test, IFN- γ release assay and IFN-γ-induced protein-10. BMC Pediatrics, [S. l.], v. 21, p. 76, 2021.
GILANI, B.; SERGENT, S. R. Interferon Test. Treasure Island: StatPearls Publishing, 2024. Disponível em: http://www.ncbi.nlm.nih.gov/books/NBK560585/. Acesso em: 05 fev. 2024.
GİRİT, S. et al. Screening for Latent Tuberculosis in Children With Immune-mediated Inflammatory Diseases Treated With Anti-tumor Necrosis Factor Therapy: Comparison of Tuberculin Skin and T-SPOT Tuberculosis Tests. Archives of Rheumatology, [S. l.], v. 35, n. 1, p. 20–28, mar. 2020.
GRAHAM, S. M. et al. Clinical Case Definitions for Classification of Intrathoracic Tuberculosis in Children: An Update. Clinical Infectious Diseases, [S. l.], v. 61, supl. 3, p. S179-187, 15 out. 2015.
GÜNTHER, G. et al. Clinical Evaluation of a Line-Probe Assay for Tuberculosis Detection and Drug-Resistance Prediction in Namibia. Microbiology Spectrum, [S. l.], v. 10, n. 3, p. e0025922, 29 jun. 2022.
HAN, X. F. et al. Factors associated with negative pleural adenosine deaminase results in the diagnosis of childhood pleural tuberculosis. BMC Infectious Diseases, [S. l.], v. 21, n. 1, p. 473, 25 maio 2021.
HANSEN, J. et al. Lipobiotin-capture magnetic bead assay for isolation, enrichment and detection of Mycobacterium tuberculosis from saliva. PLoS One, [S. l.], v. 17, n. 7, p. e0265554, 2022.
HIRABAYASHI, R. et al. Utility of interferon-gamma releasing assay for the diagnosis of active tuberculosis in children: A systematic review and meta-analysis. Journal of Infection and Chemotherapy, [S. l.], dez. 2023. DOI: 10.1016/j.jiac.2023.12.007.
INBARAJ, L. R. et al. TB‐LAMP (loop‐mediated isothermal amplification) for diagnosing pulmonary tuberculosis in children. Cochrane Database of Systematic Reviews, [S. l.], v. 9, p. CD015806, 07 set. 2023.
JAVADI, A. et al. Extracellular vesicles from serum samples of mycobacteria patients induced cell death of THP-1 monocyte and PBMC. BMC Pulmonary Medicine, [S. l.], v. 22, n. 1, p. 57, 09 fev. 2022.
JAYAGANDAN, S. et al. Evaluation of Xpert MTB/RIF Assay on Stool Samples for the Diagnosis of Pulmonary Tuberculosis among the Pediatric Population. Journal of Laboratory Physicians, [S. l.], v. 15, n. 3, p. 329–335, set. 2023.
JENKINS, H. E. et al. Mortality in children diagnosed with tuberculosis: a systematic review and meta-analysis. The Lancet Infectious Diseases, [S. l.], v. 17, n. 3, p. 285–295, mar. 2017.
JENUM, S. et al. Added Value of IP-10 as a Read-Out of Mycobacterium tuberculosis: Specific Immunity in Young Children. The Pediatric Infectious Disease Journal, [S. l.], v. 35, n. 12, p. 1336–1338, dez. 2016.
JEPPESEN, D. K. et al. Extracellular vesicles and nanoparticles: emerging complexities. Trends in Cell Biology, [S. l.], v. 33, n. 8, p. 667–681, ago. 2023.
JIA, J. et al. Prevalence of Latent Tuberculosis Infection Among Healthy Young Children and Adolescents and a Two-step Approach for the Diagnosis of Tuberculosis Infection in Chengdu, China. The Pediatric Infectious Disease Journal, [S. l.], v. 41, n. 1, p. 6–11, jan. 2022.
JIMÉNEZ CASTRO, D. et al. Diagnostic value of adenosine deaminase in nontuberculous lymphocytic pleural effusions. European Respiratory Journal, [S. l.], v. 21, n. 2, p. 220–224, fev. 2003.
KABIR, S. et al. Xpert Ultra Assay on Stool to Diagnose Pulmonary Tuberculosis in Children. Clinical Infectious Diseases, [S. l.], v. 73, n. 2, p. 226–234, 15 jul. 2021.
KAMRA, E. et al. Diagnosis of urogenital tuberculosis by multiplex-nested PCR targeting mpt64 (Rv1980c) and IS6110: comparison with multiplex PCR and GeneXpert® MTB/RIF. Letters in Applied Microbiology, [S. l.], v. 75, n. 4, p. 857–868, out. 2022.
KASVOSVE, I. et al. Haptoglobin polymorphism and mortality in patients with tuberculosis. The International Journal of Tuberculosis and Lung Disease, [S. l.], v. 4, n. 8, p. 771–775, ago. 2000.
KAY, A. W. et al. Interferon-γ Release Assay Performance for Tuberculosis in Childhood. Pediatrics, [S. l.], v. 141, n. 6, p. e20173918, jun. 2018.
KAY, A. W. et al. Xpert MTB/RIF Ultra assay for tuberculosis disease and rifampicin resistance in children. Cochrane Database of Systematic Reviews, [S. l.], v. 9, n. 9, p. CD013359, 06 set. 2022.
KHAMBATI, N. et al. Host-Based Biomarkers in Saliva for the Diagnosis of Pulmonary Tuberculosis in Children: A Mini-Review. Frontiers in Pediatrics, [S. l.], v. 9, p. 756043, 2021.
KHAN, E. A.; STARKE, J. R. Diagnosis of tuberculosis in children: increased need for better methods. Emerging Infectious Diseases, [S. l.], v. 1, n. 4, p. 115–123, 1995.
KRUH-GARCIA, N. A. et al. Detection of Mycobacterium tuberculosis peptides in the exosomes of patients with active and latent M. tuberculosis infection using MRM-MS. PLoS One, [S. l.], v. 9, n. 7, p. e103811, 2014.
LEWINSOHN, D. M. et al. Official American Thoracic Society/Infectious Diseases Society of America/Centers for Disease Control and Prevention Clinical Practice Guidelines: Diagnosis of Tuberculosis in Adults and Children. Clinical Infectious Diseases, [S. l.], v. 64, n. 2, p. e1–33, 15 jan. 2017.
LI, C.; LIU, L.; TAO, Y. Diagnosis and treatment of congenital tuberculosis: a systematic review of 92 cases. Orphanet Journal of Rare Diseases, [S. l.], v. 14, n. 1, p. 131, 10 jun. 2019.
LI, G. et al. Long non-coding RNA expression in PBMCs of patients with active pulmonary tuberculosis. Frontiers in Microbiology, [S. l.], v. 14, p. 1257267, 2023.
LI, L. et al. Activation of endothelial cells by extracellular vesicles derived from Mycobacterium tuberculosis infected macrophages or mice. PLoS One, [S. l.], v. 13, n. 5, p. e0198337, 2018.
LI, Y. et al. The functions and applications of extracellular vesicles derived from Mycobacterium tuberculosis. Biomedicine & Pharmacotherapy, [S. l.], v. 168, p. 115767, dez. 2023.
LIEBESCHUETZ, S. et al. Diagnosis of tuberculosis in South African children with a T-cell-based assay: a prospective cohort study. The Lancet, [S. l.], v. 364, n. 9452, p. 2196–2203, 18 dez. 2004.
LIMA, S. V. M. A. et al. Spatial and temporal analysis of tuberculosis in an area of social inequality in Northeast Brazil. BMC Public Health, [S. l.], v. 19, p. 873, 04 jul. 2019.
LU, G. et al. Two Small Extracellular Vesicle sRNAs Derived From Mycobacterium tuberculosis Serve as Diagnostic Biomarkers for Active Pulmonary Tuberculosis. Frontiers in Microbiology, [S. l.], v. 12, p. 642559, 2021.
LU, M. et al. The Role of Extracellular Vesicles in the Pathogenesis and Treatment of Autoimmune Disorders. Frontiers in Immunology, [S. l.], v. 12, p. 566299, 2021.
LUNELLI, M. et al. Pleural tuberculosis: experiences from two centers in Brazil. Jornal de Pediatria, Rio de Janeiro, v. 98, n. 6, p. 621-625, nov./dez. 2022.
LUO, P. et al. Metabolic characteristics of large and small extracellular vesicles from pleural effusion reveal biomarker candidates for the diagnosis of tuberculosis and malignancy. Journal of Extracellular Vesicles, [S. l.], v. 9, n. 1, p. 1790158, 14 jul. 2020.
MAGDALENA, D. et al. Targeted metabolomics analysis of serum and Mycobacterium tuberculosis antigen-stimulated blood cultures of pediatric patients with active and latent tuberculosis. Scientific Reports, [S. l.], v. 12, n. 1, p. 4131, 08 mar. 2022.
MAGNI, R. et al. Lipoarabinomannan antigenic epitope differences in tuberculosis disease subtypes. Scientific Reports, [S. l.], v. 10, n. 1, p. 13944, 18 ago. 2020.
MANYELO, C. M. et al. Validation of host cerebrospinal fluid protein biomarkers for early diagnosis of tuberculous meningitis in children: a replication and new biosignature discovery study. Biomarkers, [S. l.], v. 27, n. 6, p. 549–561, set. 2022.
MAPHALLE, L. N. F. et al. Pediatric Tuberculosis Management: A Global Challenge or Breakthrough? Children, Basel, v. 9, n. 8, p. 1120, 27 jul. 2022.
MARAIS, B. J. Urine lipoarabinomannan testing in children with tuberculosis. The Lancet Global Health, [S. l.], v. 2, n. 5, p. e245-246, maio 2014.
MARTINS, C. DE P. et al. Vascular endothelial growth factor (VEGF) and interleukin-1 receptor antagonist (IL-1Ra) as promising biomarkers for distinguishing active from latent tuberculosis in children and adolescents. Tuberculosis, Edinburgh, v. 134, p. 102205, maio 2022.
MAYER-BARBER, K. D. Granulocytes subsets and their divergent functions in host resistance to Mycobacterium tuberculosis - a “tipping-point” model of disease exacerbation. Current Opinion in Immunology, [S. l.], v. 84, p. 102365, out. 2023.
MCNAB, F. et al. Type I interferons in infectious disease. Nature Reviews Immunology, [S. l.], v. 15, n. 2, p. 87–103, fev. 2015.
MEDEIROS, T. et al. Exploring Urinary Extracellular Vesicles and Immune Mediators as Biomarkers of Kidney Injury in COVID-19 Hospitalized Patients. Diagnostics, Basel, v. 12, n. 11, p. 2600, 27 out. 2022.
MEHAFFY, C. et al. Identification of Mycobacterium tuberculosis Peptides in Serum Extracellular Vesicles from Persons with Latent Tuberculosis Infection. Journal of Clinical Microbiology, [S. l.], v. 58, n. 6, p. e00393-20, 26 maio 2020.
MUÑOZ, L.; STAGG, H. R.; ABUBAKAR, I. Diagnosis and Management of Latent Tuberculosis Infection. Cold Spring Harbor Perspectives in Medicine, [S. l.], v. 5, n. 11, p. a017830, 08 jun. 2015.
NA, F. et al. Performance of adenosine deaminase in detecting paediatric pleural tuberculosis: a systematic review and meta-analysis. Annals of Medicine, [S. l.], v. 54, n. 1, p. 3129–3135, dez. 2022.
NGUYEN, H. V. et al. Discordant results of Xpert MTB/Rif assay and BACTEC MGIT 960 liquid culture to detect Mycobacterium tuberculosis in community screening in Vietnam. BMC Infectious Diseases, [S. l.], v. 22, n. 1, p. 506, 31 maio 2022.
O’GARRA, A. Systems approach to understand the immune response in tuberculosis: an iterative process between mouse models and human disease. Cold Spring Harbor Symposia on Quantitative Biology, [S. l.], v. 78, p. 173–177, 2013.
PASSOS, D. F. et al. Adenosine signaling and adenosine deaminase regulation of immune responses: impact on the immunopathogenesis of HIV infection. Purinergic Signalling, [S. l.], v. 14, n. 4, p. 309–320, 01 dez. 2018.
PAVAN KUMAR, N. et al. Circulating biomarkers of pulmonary and extrapulmonary tuberculosis in children. Clinical and Vaccine Immunology, [S. l.], v. 20, n. 5, p. 704–711, maio 2013.
PEDROZO, C. et al. Efficacy of the scoring system, recommended by the Brazilian National Ministry of Health, for the diagnosis of pulmonary tuberculosis in children and adolescents, regardless of their HIV status. Jornal Brasileiro de Pneumologia, [S. l.], v. 36, n. 1, p. 92–98, 2010.
PETRONE, L. et al. Blood or Urine IP-10 Cannot Discriminate between Active Tuberculosis and Respiratory Diseases Different from Tuberculosis in Children. BioMed Research International, [S. l.], v. 2015, p. 589471, 2015.
POULET, G.; MASSIAS, J.; TALY, V. Liquid Biopsy: General Concepts. Acta Cytologica, [S. l.], v. 63, n. 6, p. 449–455, 2019.
PRADOS-ROSALES, R. et al. Role for Mycobacterium tuberculosis membrane vesicles in iron acquisition. Journal of Bacteriology, [S. l.], v. 196, n. 6, p. 1250–1256, mar. 2014.
QUEIROZ, A. et al. Comparative metabolic profiling of mce1 operon mutant vs wild-type Mycobacterium tuberculosis strains. Pathogens and Disease, [S. l.], v. 73, n. 8, p. ftv066, nov. 2015.
RANA, S. V. et al. Adenosine deaminase levels in cerebrospinal fluid as a diagnostic test for tuberculous meningitis in children. Indian Journal of Clinical Biochemistry, [S. l.], v. 19, n. 2, p. 5–9, jul. 2004.
REYNOLDS, J.; MOYES, R. B.; BREAKWELL, D. P. Differential staining of bacteria: acid fast stain. Current Protocols in Microbiology, [S. l.], nov. 2009. DOI: 10.1002/9780471729259.mca03hs15.
RODO, M. J. et al. A comparison of antigen-specific T cell responses induced by six novel tuberculosis vaccine candidates. PLoS Pathogens, [S. l.], v. 15, n. 3, p. e1007643, mar. 2019.
SCHIRMER, S. et al. Immunogenicity of Mycobacterial Extracellular Vesicles Isolated From Host-Related Conditions Informs About Tuberculosis Disease Status. Frontiers in Microbiology, [S. l.], v. 13, p. 907296, 2022.
SCHMIDT, C. M. et al. Serum anti-Mce1A immunoglobulin detection as a tool for differential diagnosis of tuberculosis and latent tuberculosis infection in children and adolescents. Tuberculosis, Edinburgh, v. 120, p. 101893, jan. 2020.
SCHOREY, J. S.; CHENG, Y.; MCMANUS, W. R. Bacteria- and host-derived extracellular vesicles - two sides of the same coin? Journal of Cell Science, [S. l.], v. 134, n. 11, p. jcs256628, 01 jun. 2021.
SEDDON, J. A.; SHINGADIA, D. Epidemiology and disease burden of tuberculosis in children: a global perspective. Infection and Drug Resistance, [S. l.], v. 7, p. 153–165, 2014.
SEID, G. et al. Value of urine-based lipoarabinomannan (LAM) antigen tests for diagnosing tuberculosis in children: systematic review and meta-analysis. IJID Regions, [S. l.], v. 4, p. 97–104, set. 2022.
SETO, S. et al. Proteomic Profiling Reveals the Architecture of Granulomatous Lesions Caused by Tuberculosis and Mycobacterium avium Complex Lung Disease. Frontiers in Microbiology, [S. l.], v. 10, p. 3081, 2019.
SHAO, M. et al. Screening of potential biomarkers for distinguishing between latent and active tuberculosis in children using bioinformatics analysis. Medicine, Baltimore, v. 100, n. 5, p. e23207, 05 fev. 2021.
SHAO, Y.; HAGEMAN, J. R.; SHULMAN, S. T. Congenital and Perinatal Tuberculosis. NeoReviews, [S. l.], v. 22, n. 9, p. e600–605, set. 2021.
SHOLEYE, A. R. et al. Tuberculous Granuloma: Emerging Insights From Proteomics and Metabolomics. Frontiers in Neurology, [S. l.], v. 13, p. 804838, 2022.
SIGNORINO, C. et al. Diagnostic accuracy of Xpert ultra for childhood tuberculosis: A preliminary systematic review and meta-analysis. Pediatric Allergy and Immunology, [S. l.], v. 33, supl. 27, p. 80–82, jan. 2022.
SILVA, D. R. et al. Diagnosis of tuberculosis: a consensus statement from the Brazilian Thoracic Association. Jornal Brasileiro de Pneumologia, [S. l.], v. 47, n. 2, p. e20210054, 2021.
SILVA-PEREIRA, T. T.; SOLER-CAMARGO, N. C.; GUIMARÃES, A. M. S. Diversification of gene content in the Mycobacterium tuberculosis complex is determined by phylogenetic and ecological signatures. Microbiology Spectrum, [S. l.], p. e0228923, 17 jan. 2024.
SIMIENEH, A. et al. Combination of Xpert® MTB/RIF and DetermineTM TB-LAM Ag improves the diagnosis of extrapulmonary tuberculosis at Jimma University Medical Center, Oromia, Ethiopia. PLoS One, [S. l.], v. 17, n. 2, p. e0263172, 2022.
SINGH, P. P. et al. Exosomes released from M. tuberculosis infected cells can suppress IFN-γ mediated activation of naïve macrophages. PLoS One, [S. l.], v. 6, n. 4, p. e18564, 14 abr. 2011.
STEK, C. et al. The Immune Mechanisms of Lung Parenchymal Damage in Tuberculosis and the Role of Host-Directed Therapy. Frontiers in Microbiology, [S. l.], v. 9, p. 2603, 2018.
SUDBURY, E. L. et al. Mycobacterium tuberculosis-specific cytokine biomarkers for the diagnosis of childhood TB in a TB-endemic setting. Journal of Clinical Tuberculosis and Other Mycobacterial Diseases, [S. l.], v. 16, p. 100102, ago. 2019.
SUN, Y. F.; PI, J.; XU, J. F. Emerging Role of Exosomes in Tuberculosis: From Immunity Regulations to Vaccine and Immunotherapy. Frontiers in Immunology, [S. l.], v. 12, p. 628973, 2021.
TEBRUEGGE, M. et al. Mycobacteria-Specific Cytokine Responses Detect Tuberculosis Infection and Distinguish Latent from Active Tuberculosis. American Journal of Respiratory and Critical Care Medicine, [S. l.], v. 192, n. 4, p. 485–499, 15 ago. 2015.
TIEMERSMA, E. W. et al. Natural history of tuberculosis: duration and fatality of untreated pulmonary tuberculosis in HIV negative patients: a systematic review. PLoS One, [S. l.], v. 6, n. 4, p. e17601, 04 abr. 2011.
TORNHEIM, J. A. et al. Transcriptomic Profiles of Confirmed Pediatric Tuberculosis Patients and Household Contacts Identifies Active Tuberculosis, Infection, and Treatment Response Among Indian Children. The Journal of Infectious Diseases, [S. l.], v. 221, n. 10, p. 1647–1658, 27 abr. 2020.
TORNHEIM, J. A. et al. The Kynurenine/Tryptophan Ratio Is a Sensitive Biomarker for the Diagnosis of Pediatric Tuberculosis Among Indian Children. Frontiers in Immunology, [S. l.], v. 12, p. 774043, 2021.
URABE, F. et al. Extracellular vesicles as biomarkers and therapeutic targets for cancer. American Journal of Physiology-Cell Physiology, [S. l.], v. 318, n. 1, p. C29–39, 01 jan. 2020.
VAEZIPOUR, N. et al. Towards Accurate Point-of-Care Tests for Tuberculosis in Children. Pathogens, [S. l.], v. 11, n. 3, p. 327, 08 mar. 2022.
VANDEN DRIESSCHE, K. et al. Immune vulnerability of infants to tuberculosis. Clinical and Developmental Immunology, [S. l.], v. 2013, p. 781320, 2013.
VINHAES, C. L. et al. An Inflammatory Composite Score Predicts Mycobacterial Immune Reconstitution Inflammatory Syndrome in People with Advanced HIV: A Prospective International Cohort Study. The Journal of Infectious Diseases, [S. l.], v. 223, n. 7, p. 1275–1283, 08 abr. 2021.
WELSH, J. A. et al. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. Journal of Extracellular Vesicles, [S. l.], v. 13, n. 5, p. e12451, maio 2024.
WHITTAKER, E.; GORDON, A.; KAMPMANN, B. Is IP-10 a better biomarker for active and latent tuberculosis in children than IFNgamma? PLoS One, [S. l.], v. 3, n. 12, p. e3901, 2008.
WORLD HEALTH ORGANIZATION (WHO). Global Tuberculosis Report 2023. Geneva: WHO, 2023. Disponível em: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023. Acesso em: 05 fev. 2024.
WORLD HEALTH ORGANIZATION (WHO). The End TB Strategy. Geneva: WHO, [2015?]. Disponível em: https://www.who.int/teams/global-tuberculosis-programme/the-end-tb-strategy. Acesso em: 05 fev. 2024.
WORLD HEALTH ORGANIZATION (WHO). WHO consolidated guidelines on tuberculosis: module 5: management of tuberculosis in children and adolescents. Geneva: WHO, 2023. Disponível em: https://www.who.int/health-topics/tuberculosis. Acesso em: 05 fev. 2024.
XUE, L. J. et al. Mammalian cell entry protein of Mycobacterium tuberculosis induces the proinflammatory response in RAW 264.7 murine macrophage-like cells. Tuberculosis, Edinburgh, v. 87, n. 3, p. 185–192, maio 2007.
YAN, K.; XU, G.; LI, Z. MicroRNA-20b carried by mesenchymal stem cell-derived extracellular vesicles protects alveolar epithelial type II cells from Mycobacterium tuberculosis infection in vitro. Infection, Genetics and Evolution, [S. l.], v. 101, p. 105292, jul. 2022.
YAP, J. Y. et al. Intrinsic Defects in B Cell Development and Differentiation, T Cell Exhaustion and Altered Unconventional T Cell Generation Characterize Human Adenosine Deaminase Type 2 Deficiency. Journal of Clinical Immunology, [S. l.], v. 41, n. 8, p. 1915–1935, nov. 2021.
ZHENG, W. et al. Diagnosis of paediatric tuberculosis by optically detecting two virulence factors on extracellular vesicles in blood samples. Nature Biomedical Engineering, [S. l.], v. 6, n. 8, p. 979–991, ago. 2022.
ZHOU, R. et al. Diagnostic performance of adenosine deaminase for abdominal tuberculosis: A systematic review and meta-analysis. Frontiers in Public Health, [S. l.], v. 10, p. 938544, 2022.
ZIEGENBALG, A. et al. Immunogenicity of mycobacterial vesicles in humans: identification of a new tuberculosis antibody biomarker. Tuberculosis, Edinburgh, v. 93, n. 4, p. 448–455, jul. 2013.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Andrea Alice Silva, Thalia Medeiros, Natalia Fonseca do Rosário, Alice Silva, Clemax Couto Sant’Anna, Claudete Aparecida Araújo Cardoso, Fabiana Rabe Carvalho

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).





